Electromechanical coupling in piezoelectric nanobeams due to the flexoelectric effect

نویسندگان

  • Liying Jiang
  • Shuling Hu
  • Shengping Shen
  • Xu Liang
  • Wenjun Yang
  • Z D Zhou
  • L Lin
چکیده

The flexoelectric effect is a coupling of polarization and strain gradient, which exists in a wide variety of materials and may lead to strong size-dependent properties at the nanoscale. Based on an extension to the classical beam model, this paper investigates the electromechanical coupling response of piezoelectric nanobeams with different electrical boundary conditions including the effect of flexoelectricity. The electric Gibbs free energy and the variational principle are used to derive the governing equations with three types of electrical boundary conditions. Closed-form solutions are obtained for static bending of cantilever beams. The results show that the normalized effective stiffness increases with decreasing beam thickness in the open circuit electrical boundary conditions with or without surface electrodes. The induced electric potential due to the flexoelectric effect is obtained under the open circuit conditions, which may be important for sensing or energy harvesting applications. An intrinsic thickness depending on the material properties is identified for the maximum induced electric potential. The present results also show that flexoelectricity has a more significant effect on the electroelastic responses than piezoelectricity at the nanoscale. Our analysis in the present study can be useful for understanding of the electromechanical coupling in nanobeams with flexoelectricity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topology optimization of flexoelectric structures

We present a mixed finite element formulation for flexoelectric nanostructures that is coupled with topology optimization to maximize their intrinsic material performance with regards to their energy conversion potential. Using Barium Titanate (BTO) as the model flexoelectric material, we demonstrate the significant enhancement in energy conversion that can be obtained using topology optimizati...

متن کامل

Vibration and Buckling Analysis of Functionally Graded Flexoelectric Smart Beam

In this paper, the buckling and vibration behaviour of functionally graded flexoelectric nanobeam is examined. The vibration and buckling formulations of functionally graded nanobeam are developed by using a new theory that’s presented exclusively for flexoelecteric nano-materials. So by considering Von-Karman strain and forming enthalpy equation based on displacement, polarization and electric...

متن کامل

Constructive and Destructive Interplay between Piezoelectricity and Flexoelectricity in Flexural Sensors and Actuators

Flexoelectricity is an electromechanical effect coupling polarization to strain gradients. It fundamentally differs from piezoelectricity because of its size-dependence and symmetry. Flexoelectricity is generally perceived as a small effect noticeable only at the nanoscale. Since ferroelectric ceramics have a particularly high flexoelectric coefficient, however, it may play a significant role a...

متن کامل

Bending-induced electromechanical coupling and large piezoelectric response in a micromachined diaphragm

We investigated the dependence of electromechanical coupling and the piezoelectric response of a micromachined Pb(Zr₀.₅₂Ti₀.₄₈)O₃ (PZT) diaphragm on its curvature by observing the impedance spectrum and central deflection responses to a small AC voltage. The curvature of the diaphragm was controlled by applying air pressure to its back. We found that a depolarized flat diaphragm does not initia...

متن کامل

Out-of-Plane Electromechanical Response of Monolayer Molybdenum Disulfide Measured by Piezoresponse Force Microscopy.

Two-dimensional (2D) materials have recently been theoretically predicted and experimentally confirmed to exhibit electromechanical coupling. Specifically, monolayer and few-layer molybdenum disulfide (MoS2) have been measured to be piezoelectric within the plane of their atoms. This work demonstrates and quantifies a nonzero out-of-plane electromechanical response of monolayer MoS2 and discuss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017